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Carbonyl Carbon
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One-electron reduction of [Ru(bpy)z(nl—napy)(CO)]2+
(bpy = 2,2-bipyridine, napy = 1,8-naphthyridine) induces a
reversible attack of non-bonded nitrogen of napy to carbonyl
carbon producing a five-membered metallacyclic
Ru-C(0O)-N-C-N moiety.

Photo- and electrochemical CO2 reduction mediated by
metal complexes are extensively studied.! Metal-carbonyl
species ([M-COI™+) which result from either an acid-base
equilibrium among [M-CO2](M-2)+ and [M-COOH](n-1)+ in
protic mediaZ or oxide transfer from [M-COz](n'2)+ to CO2 in
aprotic media3-4 are considered as precursors for CO
generation.  The evolution of CO caused by the reduction of
[M-CO]I™t is, however, a major problem for the conversion of
CO2 to highly reduced organic compounds on metals.  We
have demonstrated that ligands based redox reactions. of
[Ru(bpy)(trpy)(CO)I2* (bpy = 2.2-bipyridine, trpy =2,2:62"-
terpyridine) and [Ru(bpy)2(quinoline)(CO)]2+ effectively
depress the unfavorable CO dissociation and enable to catalyze
the first multi-electron reduction of C02.4s5 Accordingly,
direct interaction of a reduced ligand with a carbonyl moiety
would lead to another methodology for the activation of the
carbonyl ligand without the metal-carbonyl cleavage.  This
paper reports the first reversible metallacyclization in
[Ru(bpy)2(napy)(CO)I(PFg)2 (napy = 1,8-naphthyridine) (1)
forming a five-membered carbamoyl ring by an attack of non-
bonded nitrogen of one-electron reduced napy to the carbonyl
carbon.

Figure 1 shows the 1H-NMR (270 MHz) spectrum of
[11(PFg)20 in CD2Cl7 at 25 °C.  The assignment of signals
was accomplished by the 1H-1H COSY spectrum.  The B, f'
and vy protons of napy (structure 1) are overlapped with
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Figure 1. 1H-NMR spectrum of [1](PFg)2 in CD2Clp at 20

°C.  Assignment of the protons are performed by lg-1g
COSY spectrum.
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Structure 1.

aromatic protons of bpy ligands. ~ Three doublets at & = 9.91,
9.35, and 8.79 were assigned to the o, «', and Y protons,
respectively, in which determination of the o and o' protons
was based on the deduction that the former undergoes stronger
deshielding of the magnetic field than the latter due to the ring-
current of bpy.  The close chemical shift of o' proton to that of
an orth-proton of free naphthyridine (8 = 9.20) suggests that the
ring-current of bpy has little effect on the o' proton.  Some of
nl-napy metal complexes show fluctuation of ring proton
signals in NMR spectra on raising temperature due to a site
exchange isomerization between the two nitrogen atoms.’
The essentially same NMR spectrum of [1]2+ in DMSO as that
in CH2Cl2, however, almost unchanged up to 80 °C.
Assuming the site exchange of napy in [1]2+, the ring-current
effect of bpy would be induced on the o' proton resulting in a
lower field shift of its signal. No change of the signal on
raising temperature, therefore, implies rigidity of the
conformation of [1]2+ with 1 I-napy .

The cyclic voltammogram of [1]J(PFg)2 in CH3CN
containing Me4NBF4 (0.05 mol-dm‘3) showed one irreversible
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Figure 2. Solution IR spectra of [1](PFg)2 (10 mmol-dm-3)

in CD3CN containing (CH3)4NBF4 (50 mmol-dm'3) under
electrolysis condition at-1.10 V (vs. AglAgCl).
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cathodic wave at Ep ¢ = -1.03 V (vs. AglAgCl) and successive
two reversible couples at E1/2 =-1.50 and -1.74 V.  Taking
into account that analogous [Ru(bpy)z(quinoline)(CO)]2+
undergoes three reversible redox process (2+/1+/0/1-) at -1.11,
-1.37 and -1.65 V in CH3CN,4 the first irreversible and two
reversible redox couples of [1]2+ are associated with the napy
and two bpy ligands based reduction process, respectively. To
elucidate the irreversible cathodic process of [1]2+ at -1.03 V,
solution IR spectra of [1]2+ were measured under the
electrolysis conditions (Figure 2); the controlled potential
electrolysis of [1](PFe)2 at -1.1 V in CD3CN containing
MegNBF4 (0.05 mol'dm'3) results in a gradual disappearance
of the strong v(C=0) band at 2003 cm-l of [1]2+ and
emergence of a new band at 1585 cm-! accompanying some
changes in v(C=C) bands region of bpy and napy rings between
1400 and 1500 cm-l.  Similarl , electrochemical one-electron
reduction of [Ru(bpy)z(napy)(1 CO)](PFg)2 in CD3CN under
the same electrolysis conditions also caused an appearance of a
new band at 1543 cm-l with the sacrifice of the strong
v(13C=0) band at 1958 cm1. A dark red precipitate obtained
by concentration of the electrolyzed CH3CN solution of
[11(PF¢)2 and subsequent extraction with CH2Cl7 also showed
a strong band at 1565 cm-! in the solid state, and gave a parent
peak at m/z = 572 (M) in the FAB-mass spectrum.8
Furthermore, one-electron reduction of [1](PFg)2 at -1.10 V in
CH3CN and the subsequent oxidation of the solution by air
afforded the starting complex within 2 hr in an almost
quantitative yield.9 These results clearly indicate that neither
degradation of nor solvation to [1]* is involved in the
irreversible one-electron reduction.

It is worthy of note that one- and two-electron reduction
of homologous [Ru(bpy)2(quinoline)(CO)]2+ caused red shift
in the v(C=0) band from 2015 cm-1 to 1980 and 1939 cm-1,
successively.4 The tremendous red shift for the v(C=0) band
of [1]2+ by 418 cm-1 upon a one-electron reduction, therefore,
is reasonably explained by an intramolecular nucleophilic attack
of the non-bonded nitrogen of 1 1—napy to the carbonyl carbon
resulting in the five-membered carbamoyl ring (scheme 1).
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Scheme 1.

Metallacyclization in scheme 1 was also confirmed by
13¢ NMR spectra. One-electron reduction of
[Ru(bpy)z(napy)(l3CO)](PF6)2 under the electrolysis in
CD3CN resulted in a disappearance of the carbonyl carbon
signal of [1]2+ at § = 199.5 ppm accompanying with the
broadening of aromatic carbon signals in a region from 120 to
160 ppm due to the paramagnetism of the introduced electron in
napy. However, the solution clearly showed a strong signal at
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8 =219.5 ppm assignable to the carbamo¥1 carbon10 of the five
membered metallacyclic Ru-C(O)-N-C-N moiety (scheme 1).
Thus, metallacyclization (scheme 1) by taking advantage of the
napy based redox process, enables reversible conversion
between carbonyl and carbamoyl moieties with no Ru-CO bond
cleavage.
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