Chemistry Letters 1995 891 ## Novel Reversible Metallacyclization in $[Ru(bpy)_2(\eta^1-napy)(CO)]^{2+}$ (bpy = 2,2-bipyridine, napy = 1,8-naphthyridine) by Intramolecular Attack of Non-Bonded Nitrogen of napy to Carbonyl Carbon Hiroshi Nakajima and Koji Tanaka* Institute for Molecular Science, Department of Structural Molecular Science, The Graduate University for Advanced Studies, Myodaiji, Okazaki 444 (Received July 6, 1995) One-electron reduction of $[Ru(bpy)2(\eta^1-napy)(CO)]^{2+}$ (bpy = 2,2-bipyridine, napy = 1,8-naphthyridine) induces a reversible attack of non-bonded nitrogen of napy to carbonyl carbon producing a five-membered metallacyclic [Ru-C(O)-N-C-N] moiety. Photo- and electrochemical CO2 reduction mediated by metal complexes are extensively studied.¹ Metal-carbonyl species ([M-CO]ⁿ⁺) which result from either an acid-base equilibrium among [M-CO₂](n-2)+ and [M-COOH](n-1)+ in protic media² or oxide transfer from [M-CO₂]⁽ⁿ⁻²⁾⁺ to CO₂ in aprotic media^{3,4} are considered as precursors for CO The evolution of CO caused by the reduction of [M-CO]ⁿ⁺ is, however, a major problem for the conversion of CO₂ to highly reduced organic compounds on metals. have demonstrated that ligands based redox reactions of $[Ru(bpy)(trpy)(CO)]^{2+}$ (bpy = 2,2'-bipyridine, trpy = 2,2':6'2"terpyridine) and [Ru(bpy)2(quinoline)(CO)]²⁺ effectively depress the unfavorable CO dissociation and enable to catalyze the first multi-electron reduction of CO₂.4,5 Accordingly, direct interaction of a reduced ligand with a carbonyl moiety would lead to another methodology for the activation of the carbonyl ligand without the metal-carbonyl cleavage. paper reports the first reversible metallacyclization in $[Ru(bpy)2(napy)(CO)](PF_6)2 (napy = 1,8-naphthyridine) (1)$ forming a five-membered carbamoyl ring by an attack of nonbonded nitrogen of one-electron reduced napy to the carbonyl Figure 1 shows the $^1H\text{-NMR}$ (270 MHz) spectrum of [1](PF6)2 6 in CD2Cl2 at 25 °C. The assignment of signals was accomplished by the $^1H\text{-}^1H$ COSY spectrum. The $\beta,\,\beta'$ and γ protons of napy (structure 1) are overlapped with Figure 1. 1 H-NMR spectrum of [1](PF6)2 in CD2Cl2 at 20 $^{\circ}$ C. Assignment of the protons are performed by 1 H - 1 H COSY spectrum. Structure 1. aromatic protons of bpy ligands. Three doublets at $\delta = 9.91$, 9.35, and 8.79 were assigned to the α , α' , and γ protons, respectively, in which determination of the α and α' protons was based on the deduction that the former undergoes stronger deshielding of the magnetic field than the latter due to the ringcurrent of bpy. The close chemical shift of α' proton to that of an orth-proton of free naphthyridine ($\delta = 9.20$) suggests that the ring-current of bpy has little effect on the α' proton. Some of η^{1} -napy metal complexes show fluctuation of ring proton signals in NMR spectra on raising temperature due to a site exchange isomerization between the two nitrogen atoms.⁷ The essentially same NMR spectrum of $[1]^{2+}$ in DMSO as that in CH2Cl2, however, almost unchanged up to 80 °C. Assuming the site exchange of napy in $[1]^{2+}$, the ring-current effect of bpy would be induced on the α' proton resulting in a lower field shift of its signal. No change of the signal on raising temperature, therefore, implies rigidity of the conformation of $[1]^{2+}$ with η^{1} -napy. The cyclic voltammogram of [1](PF6)2 in CH3CN containing Me4NBF4 (0.05 mol·dm⁻³) showed one irreversible Figure 2. Solution IR spectra of [1](PF₆)₂ (10 mmol·dm⁻³) in CD₃CN containing (CH₃)4NBF₄ (50 mmol·dm⁻³) under electrolysis condition at -1.10 V (vs. AglAgCl). 892 Chemistry Letters 1995 cathodic wave at $E_{p,c} = -1.03 \text{ V}$ (vs. AglAgCl) and successive two reversible couples at $E_{1/2} = -1.50$ and -1.74 V. into account that analogous [Ru(bpy)2(quinoline)(CO)]²⁺ undergoes three reversible redox process (2+/1+/0/1-) at -1.11, -1.37 and -1.65 V in CH₃CN,⁴ the first irreversible and two reversible redox couples of [1]²⁺ are associated with the napy and two bpy ligands based reduction process, respectively. To elucidate the irreversible cathodic process of [1]²⁺ at -1.03 V, solution IR spectra of $[1]^{2+}$ were measured under the electrolysis conditions (Figure 2); the controlled potential electrolysis of [1](PF6)2 at -1.1 V in CD3CN containing Me4NBF4 (0.05 mol·dm⁻³) results in a gradual disappearance of the strong $v(C \equiv 0)$ band at 2003 cm⁻¹ of $[1]^{2+}$ and emergence of a new band at 1585 cm⁻¹ accompanying some changes in v(C=C) bands region of bpy and napy rings between 1400 and 1500 cm⁻¹. Similarly, electrochemical one-electron reduction of [Ru(bpy)2(napy)(13CO)](PF6)2 in CD3CN under the same electrolysis conditions also caused an appearance of a new band at 1543 cm⁻¹ with the sacrifice of the strong $v(^{13}C=0)$ band at 1958 cm⁻¹. A dark red precipitate obtained by concentration of the electrolyzed CH3CN solution of [1](PF6)2 and subsequent extraction with CH2Cl2 also showed a strong band at 1565 cm⁻¹ in the solid state, and gave a parent peak at m/z = 572 (M) in the FAB-mass spectrum.⁸ Furthermore, one-electron reduction of [1](PF6)2 at -1.10 V in CH3CN and the subsequent oxidation of the solution by air afforded the starting complex within 2 hr in an almost quantitative yield.⁹ These results clearly indicate that neither degradation of nor solvation to [1]+ is involved in the irreversible one-electron reduction. It is worthy of note that one- and two-electron reduction of homologous $[Ru(bpy)_2(quinoline)(CO)]^{2+}$ caused red shift in the $\nu(C\equiv O)$ band from 2015 cm $^{-1}$ to 1980 and 1939 cm $^{-1}$, successively. 4 The tremendous red shift for the $\nu(C\equiv O)$ band of $[1]^{2+}$ by 418 cm $^{-1}$ upon a one-electron reduction, therefore, is reasonably explained by an intramolecular nucleophilic attack of the non-bonded nitrogen of η^1 -napy to the carbonyl carbon resulting in the five-membered carbamoyl ring (scheme 1). Scheme 1. Metallacyclization in scheme 1 was also confirmed by $1\,3\,C$ NMR spectra. One-electron reduction of [Ru(bpy)2(napy)(^{13}CO)](PF6)2 under the electrolysis in CD3CN resulted in a disappearance of the carbonyl carbon signal of [1]^2+ at $\delta=199.5$ ppm accompanying with the broadening of aromatic carbon signals in a region from 120 to 160 ppm due to the paramagnetism of the introduced electron in napy. However, the solution clearly showed a strong signal at $\delta = 219.5$ ppm assignable to the carbamoyl carbon 10 of the five membered metallacyclic Ru-C(O)-N-C-N moiety (scheme 1). Thus, metallacyclization (scheme 1) by taking advantage of the napy based redox process, enables reversible conversion between carbonyl and carbamoyl moieties with no Ru-CO bond cleavage. This work is partially supported by JSPS Fellowships for Japanese Junior Scientists and a Grant-in-Aid for Scientific Research from the Ministry of Education of Japan. ## **References and Notes** - P. A. Lay, A. F. Masters, C. D. Wasiowych, Aust. J. Chem., 48, 835 (1995); K. -M. Lam, K. -Y. Wong, S. -M. Yang, and C.-M. Che, J. Chem. Soc., Dalton Trans., 1995, 1103; A. M. Herring, B. D. Steffey, A. Miedaner, S. A. Wander, and D. L. DuBois, Inorg. Chem., 34, 1100 (1995); Steffey, Bryan D.; Miedaner, Alex; Maciejewski-Farmer, Mary L.; P. R. Bernatis, A. M. Herring, V. S. Allured, V. Carperos, D. L. DuBois, Organometallics, 13, 4844 (1994); E. Fujita, J. Haff, R. Sanzenbacher, and H. Elias, Inorg. Chem., 33, 4627 (1994); O. Ishitani, M. W. George, T. Ibusuki, F. P. A. Johnson, K. Koike, K. Nozaki, C. Pac, J. J. Turner, and J. R. Westwell, Inorg. Chem., 33, 4712 (1994); E. Kimura, S. Wada, M. Shionoya, and Y. Okazaki, *Inorg. Chem.*, 33, 770 (1994); B. P. Sullivan, Electromchemical and Electrocatalytic Reaction of Carbon Dioxide, Elsevier, Amsterdam (1993), and references are therein. - H. Ishida, K. Tanaka, and T. Tanaka, *Chem. Lett.*, 1985, 405.; H. Tanaka, B. -C. Tzeng, H. Nagao, S. -M. Peng, and K. Tanaka, *Inorg. Chem.*, 32, 1508 (1993). - 3 G. R. Lee, J. H. Maher, and N. J. Cooper, J. Am. Chem. Soc., 109, 2956 (1987); G. R. Lee and N. J. Cooper, Organometallics, 4, 794 (1985). - 4 H. Nakajima, T. Mizukawa, H. Nagao, and K. Tanaka, Chem. Lett., 1995, 251. - 5 H. Nagao, T. Mizukawa, and K. Tanaka, *Inorg. Chem.*, 33, 3415 (1994). - 6 Anal. Calced (%) for C₂9H₂2N₆OP₂F₁2Ru: C, 40.43; H, 2.58; N, 9.75 Found (%): C, 40.09; H, 2.86; N, 9.47. IR(KBr): ν(C≡O) = 1996 cm⁻¹. FAB-Mass (m/z) = 717 (M-PF₆) - M. -J. Bermejo, J. -I. Ruiz, X. Solans, and J. Vinaixa, J. Organomet. Chem., 463, 143 (1993); M. -J. Bermejo, J. -I. Ruiz, X. Solans, and J. Vinaixa, *Inorg. Chem.*, 27, 4385 (1988). - 8 Attempts of complete separation of [1](BF4) from the electrolyte (Me4NBF4) by recrystalization is now in progress. - 9 The controlled potential electrolysis of $[1]^+$ at 0 V also generated $[1]^{2+}$ although the cyclic voltammogram of $[1]^{2+}$ did not show an anodic wave coupled with the first cathodic wave at -1.03 V. This fact suggests a slow electron transfer from $[1]^+$ to a working electrode probably due to a large configurational barrier from the metallacyclo structure of $[1]^+$ to η^1 -napy ligated $[1]^{2+}$. - F. Ozawa, S. Chikaoka, X. Cao, A. Yamamoto, J. Organomet. Chem., 424, 173 (1992); M. Nonoyama, Inorg. Chim. Acta, 115, 169 (1986).